(19) INDIA

(22) Date of filing of Application :13/07/2020 (43) Publication Date : 21/08/2020

(54) Title of the invention : A METHOD FOR PREPARATION OF COBALT-GRAPHENE FERROMAGNETIC CONTACTS BASED SPIN-FIELD EFFECT TRANSISTORS

(51) International classification	:H01L21/00	(71)Name of Applicant:
(31) Priority Document No	:NA	1)Neetu Nirmal Gyanchandani
(32) Priority Date	:NA	Address of Applicant :J D College of Engineering and
(33) Name of priority country	:NA	Management, Nagpur 441501, India Maharashtra India
(86) International Application No	:NA	2)Prashant Brajmohan Maheshwary
Filing Date	:NA	3)Kailash Rambhau Nemade
(87) International Publication No	: NA	(72)Name of Inventor:
(61) Patent of Addition to Application Number	:NA	1)Neetu Nirmal Gyanchandani
Filing Date	:NA	2)Prashant Brajmohan Maheshwary
(62) Divisional to Application Number	:NA	3)Kailash Rambhau Nemade
Filing Date	:NA	

(57) Abstract:

The present invention relates to a method for preparation of cobalt-graphene ferromagnetic contacts based spin-field effect transistors. The object is to provide Datta and Das type s-FET and Back-Gate type s-FET with cobalt-graphenenano sheets based ferromagnetic electrodes. In the construction of s-FET, the Co-Graphenenano sheets based ferromagnetic electrode having Ohmic contact behavior is used. Notable value magneto resistanceis obtained for both devices as a function of temperature and gate voltage. Magneto resistance monotonically reduces as temperature increases. For greater insight into about the functioning of device, spin-polarization values are estimated at different temperatures. Switching action in both the devices are analyzed and finally it is found that Datta and Das type s-FET shows appropriate switching action. Following invention is described in detail with the help of Figure 1 of sheet 1 showing Datta and Das Type s-FET structure and Figure 2 of sheet 2 showing back-gate type s-FET structure.

No. of Pages: 25 No. of Claims: 3